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Abstract: Black holes in four dimensions have to be topologically spherical, dynamically stable
and uniquely characterized by their conserved charges. In higher dimensions, black holes are less
constrained. Black hole solutions have been found with non-spherical horizon topology, and the
same conserved charges can describe different types of black objects. This work presents a study
of known exact black hole solutions in higher dimensions: the generalization of the Schwarzschild
and Kerr metric (Schwarzschild-Tangherlini and Myers-Perry rotating in a single plane) and a brief

introduction to black p-branes.

I. INTRODUCTION

Some of the most promising approaches to unified the-
ories of physics, such as string or braneworld theories,
predict that spacetime has more than four dimensions.
In these theories gravity is higher dimensional, so, natu-
rally, they involve black holes in higher dimensions. This
is one of the main drives to study this subject.

Black holes are fascinating objects. In 4 dimensions
they exhibit remarkable features such as their complete
characterization by mass and angular momentum, their
spherical topology [1] and dynamical stability. It is of
interest to study whether these properties hold for black
holes in higher dimensions.

As we will see, General Relativity in higher dimensions
has new and interesting aspects. Besides the straight-
forward generalization of the Schwarzschild solution to
d > 4, there are new types of black objects with hori-
zons that are not topological spheres. For example, we
can find black strings and p-branes. These are black ob-
jects with infinitely extended horizons in p spatial direc-
tions, while compact in others. As shown by Gregory
and Laflamme [2], black branes are dynamically unstable
objects. The instability makes the horizon “ripple” and
eventually pinch off, forming a naked singularity which
violates cosmic censorship [3].

The Kerr black hole can also be generalized to higher
dimensions, in the form of the Myers-Perry solution [4].
Adding extra spatial dimensions means that black holes
can rotate in several independent planes and can have in-
dependent angular momenta. Whereas the angular mo-
mentum of a black hole in 4 dimensions is limited by the
Kerr-bound, J < GM, in in d > 6 the Myers-Perry so-
lutions have no upper bound: they can have arbitrarily
large angular momenta. These are called ultra-spinning
black holes, and they are also unstable [5].

In higher dimensions black objects are not uniquely
characterized by their conserved charges. This was first
shown by Emparan and Reall [6] with the example of
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a five-dimensional black hole with an event horizon of
topology S' x S2, a black ring, whose rotation prevents
collapsing. Within some ranges, the same values of mass
and angular momentum can describe a rotating black
hole with spherical topology and also two black rings.
Therefore in high dimensions we find a violation of black
hole uniqueness. As d increases, we expect to have a
larger variety of black hole solutions. While there has
been great progress in exploring them, it is believed that
many more remain to be investigated [7].

Other interesting solutions have been found, such as a
black saturn [8], a composite black object consisting of a
spherical black hole surrounded by a black ring, super-
positions of concentric black rings [9, 10], and compacti-
fications of black branes called blackfolds [11], which are
beyond the scope of this work.

II. ASYMPTOTICALLY FLAT SOLUTIONS
A. Conserved charges

A first, basic problem is how we can measure the mass
and angular momentum of the solutions. Black holes are
solutions to the Einstein equations that do not have any
sources of mass; the matter stress tensor is zero. How-
ever, we can also identify the mass and angular momenta
of isolated systems (such as black holes) from the asymp-
totic behavior of their gravitational field.

There are many different approaches to this problem
(e.g., Hamiltonian analyses), but here we will follow one
that is conceptually simple. The idea is that, at asymp-
totically large distances, the metric of the black hole
should approach the metric of a solution to the linearized
Einstein equations (in the weak field limit). Linear equa-
tions admit localized (distributional) sources. We can
then consider a distributional stress energy tensor with
given mass M and spins J;; and, by solving the equa-
tions, we will obtain the weak-field geometry created at
large distance by any localized object with mass M and
spins J;;. This will then allow us to extract the mass and
spins from the asymptotic behavior of the metric com-
ponents, with all the correct numerical proportionality
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coefficients.

We will solve Einstein’s equations for this system fol-
lowing [7]. The metric takes the form of a small pertur-
bation around flat Minkowski metric

Guv = M + hum (1)

with |h,, | < 1. We choose to work in transverse gauge

- 1
Vihuw =V, (hw — thw> =0, (2)

where EW is the trace-reversed perturbation and h is
the trace of h,.

With this choice, Einstein’s equations are simply writ-
ten to leading order as

Ohpw = —167GT,. (3)

We will solve the equations for a point-like source of
mass M and angular momentum with antisymmetric ma-
trix J;; at the origin #® = 0 of flat space in Cartesian
coordinates.

Ttt = M(S(d_l)(xk), (4)

1
Tti = —iJijvj‘(S(d_l)(J]k>. (5)

In spherical symmetry, the homogeneous equation
Ohse = 0 takes the form

rd—2 ar(’f'd728rhtt) = 0, (6)
which is solved by
- c
hy = rd—3’ (7)

where ¢ is an integration constant which must be pro-
portional to the mass M that sources the field. Our task
now is to find the proportionality constant, when (7) is
viewed as a solution with the distributional source (4).

For this purpose, we will integrate the two sides of the
equation obtained from eq. (3) and (4),

Ohy = —167GM (). (8)

If we directly plugged (7) in the right hand side of this
equation we would get 0. In order to catch the distri-
butional source, we must work with this equation inte-
grated over the volume on both sides. The right hand
side is then integrated by parts, while the left hand side
picks the delta. In this way we find

167GM

T d-3)s ©)
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where 4_o is the area of a unit (d — 2)-sphere

d—1
2m 2

Qg_o =

as calculated in the appendix A.

We still need to find the complete solution for the met-
ric perturbation h,,, instead of its trace-reversed form.
To find the solution for the perturbation,

>

= U”Vil;w = ﬂtt}_ltt = *Btt;
16mrGM 1
(d—3)Qy_ori 3

>
|
—
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Since h,, = }_lyu + giﬁ/_m;wa

_ 1 - d—-3- 1z
tt tt+d_2 q_o = a3 (12)
where we have defined the mass parameter
16nGM
= 13
M d—2) Qs (13)

which is convenient since it is the coefficient that appears
directly in the (¢t) metric component. This is one of our
main results: if the gravitational field of an asymptoti-
cally flat solution decays at large distances like eq. (12),
then we can extract its mass using eq. (13).

For completeness, we obtain that, in the transverse
gauge in which we work, the spatial part takes the form

1 5 1%

The previous calculation gives us the mass. Now we pro-
ceed to do a similar analysis for the angular momentum.

Since we are solving linear equations, the superposition
principle allows us to study sources of mass and spin
independently of each other. From (5)

DiLti = SWGJijVj(S(d_l)(CC). (15)

This is solved by taking the Green’s function and ex-
panding with r = |x| > |y]

- 167G

— T, V(yk)
h'L - dd 1 [
" d=3)Q / Y

|x —y|¢=3

887G x _ _
N, /dd Yyt T V61 (y)
&G z* _ _
= T, /dd 10151364 (y)
881G l’kJik
= —Qd_Q rd—l :ht’i' (16)

In the last step we have used that this perturbation is
traceless and therefore the barred and unbarred metric
perturbations coincide.
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Putting together the results of the two calculations, we
find that the asymptotic metric of a solution with mass
M and angular momentum J;; is given by

167G M

= 1
htt (d — 2) Qd72 ’I"dis’ ( 7)
167G M
hij = i 1
J (d — 2)(d — 3) Qd,Q rd=3 2 J ( 8)
8rG x Jzk:
hi = =gt (19)

Thus are defined the mass and angular momentum for
any isolated system in its center of mass frame. The
angular momentum J;; can be simplified by a suitable
coordinate rotation which allows us to write it in a block
diagonal form

0 Jiz 0 0

~Jiz 0 0 0
Ja=| 0 0 0 20
(ij) 0 0 —Ju 0 (20)

Each block corresponds to a plane of rotation. Fol-
lowing [7], angular momenta can be relabelled as J, =
J2a-1,2¢. There can be N = L%J (integer part) inde-
pendent angular momenta.

We can switch to polar coordinates for each of the
planes,

(T2a—1, T2q) = (T4 COS (g, To SIN g ). (21)
The r, are direction cosines for each independent ro-

tation plane, and must satisfy Za .72 =72 Then

8rGJ, 12
ht¢a = - Qd72 pd—1" (22)

B. Schwarzschild-Tangherlini solution

Take the former solution and consider the static case.
In polar coordinates, the metric takes the form

ds? = (1 - T—) a?

v (14 iy

This is very similar to the Schwarzschild metric except
for the term that multiplies the angular part. The dif-
ference is simply due to a different choice of radial coor-
dinate, since the conventional form of the Schwarzschild
solution is not in transverse gauge. In order to relate

) (dr? +7r2dQ7_,) . (23)
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them, we define p as the area radius,

1/2
W 1
= (1
, (*(d 3>rd3> g

e Ik
8TGM )

- (1 T A= 2)d=3) Qg1 3

Plugging (24) in (23) and relabeling p — 7, the metric
becomes
ds? = = (1- — )+ (1~ L)fl dr? + r2dQ3

rd rd—3 -2
(25)

Since (23) was obtained as a solution to linear order in
i, in principle the steps from (23) to (25) would only give
us a new form of the linear solution, and in particular the
coefficient g, should be correct only to linear order in p.
However, it turns out that, in the form in (25), this is an
exact solution to the Einstein equations in d dimensions.

This solution was found by Tangherlini [12] in 1963
and it is a generalization to higher dimensions of the
Schwarzschild solution. For d = 4, u = 2G M, we recover
the familiar solution.

For p > 0, the surface r = u is an event horizon.
It is possible to change to Kruskal-type coordinates that
are regular on the event horizon and find the maximal
analytic extension. The corresponding Penrose diagram
takes the exact form as its 4 dimensional counterpart,
but now each point represents a (d — 2)-sphere.

It does not present new features respect to the 4-
dimensional case. In fact, Birkhoff’s theorem can
be extended to higher dimensions [13], yielding that
Schwarzschild-Tangherlini is the most general solution
for an asymptotically flat and hyperspherically symmet-
ric geometry.

There is also a uniqueness theorem [14] that yields that
the Schwarzschild-Tangherlini metric is the only solution
of the vacuum Einstein equations in higher dimensions
for an asymptotically flat and static geometry.

Therefore, in an extension of the four-dimensional re-
sult, a higher-dimensional static, neutral black hole is
fully characterized by its mass.

Q

(24)

d—3

C. Myers-Perry black holes

The Kerr metric can be also generalized. The d di-
mensional solution describing a black hole rotating in all
possible independent rotation planes was found by Myers
and Perry [4] in 1986. We will only discuss the case of
a black hole rotating in a single plane. The metric takes
the form

ds? = — dt* + s 52(dt — asin? 0 de)?
+ % dr? + 2 d6? + (r* + a*) sin® 6 dp?
+ r?cos? 0d0?_,, (26)
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where

7
rd—5"

¥ = 7% 4 a” cos? 6, A=r*4a® - (27)

Our previous results now allow us to obtain the mass
and angular momentum of this solution. For this pur-
pose, we simply need to expand the metric components

git and g at large distances, r > 1.

I
hy = ———— 2
tt Td_523 ( 8)
2a sin? O
hig, = — ot (29)

Comparing this to (17) and (22) in the asymptotic
field, yields

(A= 2) Qs

M= "a M (30)
2

J; = ﬁMGZ‘. (31)

This result tells us that the parameter a in the Myers-
Perry solution is the angular momentum per unit mass,
up to a d-dependent factor. Setting a; = 0 we recover
the Schwarzschild-Tangherlini solution.

In many respects this metric is similar to the Kerr so-
lution. The last term corresponds to the line element
on a (d — 4)-sphere, it represents the additional spatial
dimensions and vanishes for the case d = 4. The other
difference we notice is that the radial fall-off of the gravi-
tational potential depends on the number of dimensions.

Even if this might seem innocuous, it is actually the
source of a main difference between the Kerr black holes
and the Myers-Perry black holes. The reason is the con-
trast with the behavior of the centrifugal repulsion, which
does not depend on the number of dimensions, since rota-
tion happens on a plane. The competition between grav-
itational attraction and centrifugal repulsion will then
have a strong dependence on the dimensionality, which
we can heuristically see with

2
S R (32)

r2 rd—3 r2

The first term on the right is the attractive Newtonian
potential in d spacetime dimensions. The second is the
repulsive centrifugal potential, which as we can see does
not depend on d. Therefore the competition between the
two terms will change with d.

The outer event horizon is located at the rg that makes
g"" =0, that is, A(r) = 0.

r4a— o (33)
To

Since A depends on the number of dimensions, this
means that the features of the event horizons will depend
on the dimension.

Setting d = 4 we get the familiar second order equation

ré — pro +a* =0, (34)

Treball de Fi de Grau

2 _ 2
ro = MENV I A7 ”;4“ = GM +£VG2M2 — a2, (35)

Which yields that we will have a regular event horizon
for a < GM. For the extremal case, a = GM, the Kerr-
bound, there is a single degenerate horizon, and the case
with @ > GM features a naked singularity. Similarly, in
d =5 we get 1 = 4/ — a2, yielding that the solution
only exists up to a? = p.

This is not the case for d > 6. The function A(r) is
positive for large r and negative for small r, so (Bolzano’s
theorem) there will always be a single positive root of
A(r) = 0, independently of the value of a. Therefore
a has no bound, it can take any arbitrarily large value.
Myers-Perry black holes with large a are known as wultra-
spinning black holes. As mentioned in the introduction,
these are unstable [5, 15], as they spread out in the
plane of rotation and become a black membrane with
horizon geometry R? x S9~% which experiment Gregory-
Laflamme-like instabilities.

III. BLACK P-BRANES

The easiest way to construct a higher dimensional
black object is to add a flat spatial direction to a known
black hole vacuum solution of Einstein’s equations. For
example, take Schwarzschild solution in d = 4 and add
an extra spatial dimension,

-1

ds? = — (1 - 2GM> dt2+<2GM> dr?+r? dQ3+d22.
r T

(36)

It is also a Ricci flat manifold, since it is the direct
product of two Ricci-flat manifolds. This is called a black
string and it has an event horizon with topology S? x R.
This simple construction shows that horizons need not
to be spherical. Furthermore, if a piece of black string is
bent into a circular shape, we would have a black ring,
with topology $2 x S, which should rotate in order to
prevent the collapse.

In general, we can add p flat spatial directions to any
vacuum black hole solution B in d dimensions with hori-
zon topology H, which will have an horizon with topology
H x RP: these are black p-branes. They do not have a
counterpart in d = 4.

We can find other topologies, for example, if we iden-
tify 2% ~ x* + L;, getting a topology H x TP.

There are, however, some restrictions on the topology
of the event horizons [16], which we will not review.

IV. CONCLUSIONS

Black holes in higher dimensions are a thrilling new
chapter in general relativity. They can be radically dif-
ferent compared to their four-dimensional counterparts:
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they present new horizon topologies, they have hair
(they are not uniquely characterized by their conserved
charges), and some of them are unstable. In this work we
have barely had a glimpse of the rich variety of solutions
that can be found in higher dimensions.

In particular, we have seen how we can define con-
served charges to asymptotically flat solutions. We have
reviewed the generalization of the Schwarzschild solution
to the higher dimensional case, we have presented the
solution for a Myers-Perry black hole rotating in a sin-
gle plane and, using our previous results, we have ex-
tracted their physical mass and angular momentum from
the asymptotic behavior of the solutions. The surpris-
ing fact that for d > 6 the angular momentum can be
arbitrarily large has been emphasized. Finally, we have
briefly and heuristically shown how other types of black
objects can be constructed.

Appendix A: Area of a unit n-sphere

We begin by writing down the metric of a 2-sphere and
a 3-sphere hoping to recognize a pattern.

n=2 — dQy = df? +sin’ 6, db3
n=3 — dQ3 = df? + sin” 6, (d62 + sin® h, db3)

n — dQ, = dﬂf +sin? 6, dQ,,_1 (A1)

In order to find €2,, we just have to integrate the former

recurrence relation,

Q, = / df; sin™ "t 0, Qn_lzﬂn—1/ delsinnfl(el)
0 0
/2
= QQn_l/del sin2(5)~1(0;) cos?(3) "1 (0y)
0

(5 r(z) r(zt
B Qﬁr (1(12-’_2)9"_1 _QWF(SL‘E‘?) I‘((g))Q"_Q
= ... = 7-[-71/2 F(%) _ 271’”31 A
e T 4

An alternative derivation with gamma function as
starting point can be found in [17].
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